学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是小编给大家整理的知识点,希望对大家有所帮助。
【知识点概念】
1.横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。
2.用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。
3.用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。
4.写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。
5.数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。
6.一组数对只能表示一个位置。
7.表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。
【巧记位置】
表示位置有绝招
一组数据把它标
竖线为列横为行
列先行后不可调
一列一行一括号
逗号分隔标明了
在方格纸上,物体向左或向右平移,行数不变,列数等于减去或加上平移的格数;
物体向上或向下平移,列数不变,行数等于加上或减去平移的格数。
【切记】
1、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、作用:一组数对确定一个点的位置,经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
3、在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
4、数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线,(有一个数不确定,不能确定一个点)。
图形左右平移行数不变,图形上下平移列数不变。
一、意义
1、小数乘整数:求几个相同加数的和的简便运算。
如:3.2+3.2+3.2+3.2+3.2改用乘法算式表示为(3.2×5),这个乘法算式表示的意义是(5个3.2是多少)
2、小数乘小数:就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
二、算理
1、计算:按整数乘法的法则算出积,再点小数点;点小数点时,要看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
小数乘法计算法则简记为:一算,二看,三数,四点,五去;
2、注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、乘法的验算有很多种方法:可以交换两个因数的位置再算一遍;可以用估算的方法;还可以用计算器验算。
4、积与因数的关系:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
用字母表示:a×b=c(a不等于0)
b>1,a>c
b=1,a=c
b<1,a
三、积的近似数
1、求近似数的方法有三种:四舍五入法、进一法、去尾法,在这一单元主要用四舍五入法。
步骤如下:先按照小数乘小数的方法算出积,再按题目的要求和“四舍五入”法取近似值。
注意:表示近似数时小数末尾的0不能随便去掉。
如:0.599保留两位小数是( )
2、通常情况下,人民币的最小单位是分,以元为单位的小数表示“分”的是百分位。
四、混合运算
小数四则运算顺序跟整数是一样的。
整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
关于乘法分配律的简算是这一部分的重点和难点。
案例:0.25×4.78×4
0.65×202
2.4×1.5-2.4
2.4×0.6+2.6×0.6
12.5×32×0.25
五、解决问题
1、实际生活中的估算应用,可以估大或者估小,要根据实际情况选择适当的估算策略。
2、分段计费的问题,比如乘坐出租车的问题、电费水费的问题都属于分段计费。解决方案有两种:第一种分段计费后在合并;第二种全程单价计算然后再加上少算的金额。
1、认识整千数(记忆:10个一千是一万)
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。
最大的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、公式被减数=减数+差和=加数+另一个加数
减数=被减数-差加数=和-另一个加数
差=被减数-减数
1、上课时专心一致
上课时要全心投入课堂活动,这项要求是老生常谈,却是学好数学最简单的途径。孩子有时会自恃数学能力很好,或许是在补习班已学过相关的课程内容,或许是挑战权威,认为老师不够专业,解题能力不比自己厉害,也或者受到其他同学的干扰或自己主动与同学交谈,以致未跟上课堂的学习,更忽视了老师的讲解,这种行为实在是不太聪明。因为上课不专心通常会遭到老师的指正,若再答不出老师问的问题,可是大大的失了面子;若是因不专心而漏失应学而未学的重点,可就连里子也失去了。
2、下课后认真习写题目并检视解题方法
五年级的数学题目不但题目难度提升,计算亦较复杂,计算能力不佳的孩子,会发现自己常常计算错误,在教学中还常发现孩子连九九乘法都背错,例如:8×4=36等。
要提高计算的准确度及速度,适度的练习是必要的,所以孩子应每日准时完成功课,老师通常会考量孩子们的需求,分派数学功课让孩子回家写,孩子应积极完成,并建议习写完后,自行检视自己的解题方式是否又快又好?若不然,则尝试其他的解题方式。如此一来,不仅可透过写作业,加强解题的熟练度,更可透过多一次的尝试,练习不同的解题方式,活化自己的思考。
3、遇到问题勇于发问
五年级孩子常因好面子或怕自曝其短,而不愿主动询问师长,不耻下问是学习知识的方式之一,更何况是不耻“上”问;请孩子勇于发问,课堂上遇到不懂之处则问;习写作业时,不懂则问;遇到生活中的数学问题,不懂则问;问师长、问爸妈、问同学,多询问可触发思考,有时在问答的过程中,灵机一动,困难的数学问题一下子就迎刃而解了,何乐而不为?