冬梦学习网教学资料主题班会内容页

浙教初一下数学教案

2023-12-14 07:18:09主题班会

浙教初一下数学教案 (一)

一、学习目标:1.多项式除以单项式的运算法则及其应用.

2.多项式除以单项式的运算算理.

二、重点难点:

重 点: 多项式除以单项式的运算法则及其应用

难 点: 探索多项式与单项式相除的运算法则的过程

三、合作学习:

(一) 回顾单项式除以单项式法则

(二) 学生动手,探究新课

1. 计算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2. 提问:①说说你是怎样计算的 ②还有什么发现吗?

(三) 总结法则

1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2. 本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

随堂练习: 教科书 练习

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.

E、多项式除以单项式法则

第三十四学时:14.2.1 平方差公式

一、学习目标:1.经历探索平方差公式的过程.

2.会推导平方差公式,并能运用公式进行简单的运算.

二、重点难点

重 点: 平方差公式的推导和应用

难 点: 理解平方差公式的结构特征,灵活应用平方差公式.

三、合作学习

你能用简便方法计算下列各题吗?

(1)2001×1999 (2)998×1002

导入新课: 计算下列多项式的积.

(1)(x+1)(x-1) (2)(m+2)(m-2)

(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

结论:两个数的和与这两个数的差的积,等于这两个数的平方差.

即:(a+b)(a-b)=a2-b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

例2:计算:

(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

随堂练习

计算:

(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)

(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)

五、小结:(a+b)(a-b)=a2-b2

浙教初一下数学教案 (二)

学习目标:1.完全平方公式的推导及其应用.

2.完全平方公式的几何解释.

二、重点难点:

重 点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用

难 点: 理解完全平方公式的结构特征并能灵活应用公式进行计算

三、合作学习

Ⅰ.提出问题,创设情境

一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…

(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?

(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?

(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?

(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

Ⅱ.导入新课

计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.

(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

四、精讲精练

例1、应用完全平方公式计算:

(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2

例2、用完全平方公式计算:

(1)1022 (2)992

浙教初一下数学教案 (三)

教学目标

1.知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.

2.过程与方法

经历探索一次函数的应用问题,发展抽象思维.

3.情感、态度与价值观

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.

重、难点与关键

1.重点:一次函数的应用.

2.难点:一次函数的应用.

3.关键:从数形结合分析思路入手,提升应用思维.

教学方法

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.

教学过程

一、范例点击,应用所学

猜你喜欢