冬梦学习网教学资料教案模板内容页

初中七年级下册数学教案

2023-03-31 14:37:13教案模板

初中七年级下册数学教案 (一)

一、教材分析

1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析

1、知识目标:掌握最短路径概念、能够求解最短路径。

2、能力目标:

(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。

3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

三、教法分析

课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。

四、学法指导

1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析

(一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。

教学方法及注意事项:

(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

(2)提示学生“温故而知新”,养成良好的学习习惯。

(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

(三)讲授新课(25~30分钟)

1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。

②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。

③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。

④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

教学方法及注意事项:

①启发式教学,如何实现按路径长度递增产生最短路径?

②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

(四)课堂小结(3~5分钟)

1、明确本节课重点

2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

(五)布置作业

1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

六、教学特色

以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

初中七年级下册数学教案 (二)

认识三角形教学目标:

1、知识与技能

结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系

2、过程与方法

通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力

3、情感、态度与价值观

联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣

教学重点难点:

1、重点

让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题

2、难点

探究三角形的三边关系应用三边关系解决生活中的实际问题

教学设计:

本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业

第一环节 回顾与思考

1、如何表示线段、射线和直线?

2、如何表示一个角?

第二环节 情境引入

活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片

活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中,培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

第三环节 三角形概念的讲解

(1)你能从中找出四个不同的三角形吗?

(2)与你的同伴交流各自找到的三角形

(3)这些三角形有什么共同的特点?

通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法,并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项

第四环节 探索三角形三边关系第一部分 探索三角形的任意两边之和大于第三边

活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形,学生统计能否摆成三角形的情况

第二部分 探索三角形的任意两边之差小于第三边

活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论

第五环节 练习提高

活动内容:

1、有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?

2、如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为若第三边为偶数,那么三角形的周长

3、有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆。学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?

第六环节 课堂小结

活动内容:学生自我谈收获体会,说说学完本节课的困惑,教师做最终总结并指出注意事项

学生对本节内容归纳为以下两点:

1、了解了三角形的概念及表示方法;

2、三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边

注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边

第七环节 探究拓展思考

1、若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求

2、在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?

3、以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看

第八环节 作业布置

初中七年级下册数学教案 (三)

教学目标

1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

教学重点与难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

教学准备

多媒体课件

教学过程

一、创设问题情境

1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作__________,B处记作__________。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

2、这两只小狗在跑的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征(从形和数两个角度去感受绝对值)。

3、在数轴上找到-5和5的点,它们到原点的距离分别是多少表示和的点呢

小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。

二、建立数学模型

1、绝对值的概念

(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。

注意:①与原点的关系②是个距离的概念

2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]

(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

三、应用深化知识

1、例题求解

例1、求下列各数的绝对值

-1.6,0,-10,+10

2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

特点:

1、一个正数的绝对值是它本身

2、一个负数的绝对值是它的相反数

3、零的绝对值是零

4、互为相反数的两个数的绝对值相等

3.出示题目

(1)-3的符号是______X,绝对值是______;

(2)+3的符号是______X,绝对值是______;

(3)-6.5的符号是______X,绝对值是______;

(4)+6.5的符号是______X,绝对值是______;

学生口答。

师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗

5、练习3:回答下列问题

①一个数的绝对值是它本身,这个数是什么数

②一个数的绝对值是它的相反数,这个数是什么数

③一个数的绝对值一定是正数吗

④一个数的绝对值不可能是负数,对吗

⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗

(由学生口答完成,进一步巩固绝对值的概念)

6、例2.求绝对值等于4的数

(让学生考虑这样的数有几个,是怎样得出这个结果的呢对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

分析:

①从数字上分析

∵|+4|=4,|-4|=4∴绝对值等于4的数是+4和-4画一个数轴

②从几何意义上分析,画一个数轴

因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

所以绝对值等于4的数是+4和-4.

6、练习:做书上12页课内练习1、2两题。

四、归纳小结

1、本节课我们学习了什么知识

2、你觉得本节课有什么收获

3、由学生自行总结在自主探究,合作学习中的体会。

五、课后作业

1、让学生去寻找一些生活中只考虑绝对值的实际例子。

2、课本15页的作业题。

初中七年级下册数学教案 (四)

教材分析:

平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到。这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要

教学目标:

知识技能:

1、掌握平行线的三个性质

2、会用平行线的性质进行有关的简单推理和计算

3、通过对比,理解平行线的性质和判定的区别

过程与方法:

在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力

情感、态度与价值观:

让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度

教学重点:平行线的三个性质的探索

教学难点:平行线的性质和判定的区别以及应用它们进行简单的推理

教学过程:

1、创设情境:

(1)、回顾直线平行的条件。(学生回答后,教师板书。)

(2)、设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

设计意图:通过复习回忆平行线的判定来引入新课,主要目的有两个,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。同时,开门见山较直接地提出了本节课的目标,让学生明确本节课的学习任务,有利于实现学生对学习过程的自我监控。

2、探究新知:

(1)、画平行线:

教师通过多媒体演示。

学生用方格或笔记本上的横线。

设计意图:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

(2)、问题1:如何得到同位角? a

学生独立思考后回答:如可随意画 2 b

条直线与两条平行线相交,如图1,∠1 c

和∠2是同位角。 图1

设计意图:让学生体验得到同位角的过程,特别要让学生明白所得的同位角是任意的而不是特殊角、特殊位置的。

问题2:你准备怎样去找∠1和∠2的关系?

学生分组合作交流,进行探究后发表见解。

学生回答:如测量或剪下其中某一个角把它贴到另一个同位角的位置上去观察等。

设计意图:让学生明确探究的具体环节与步骤,形成整个班级内的合作与交流,让部分学习有困难的学生也能探究出结论。

初中七年级下册数学教案 (五)

一、学习目标

1、使学生了解运用公式法分解因式的意义;

2、使学生掌握用平方差公式分解因式

二、重点难点

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结。

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1、请看乘法公式

左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2、公式讲解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精讲精练

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:判断下列分解因式是否正确。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、课堂练习

教科书练习。

六、作业

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

初中七年级下册数学教案 (六)

复习巩固解下列不等式:

①5x+54

③2(一3+x)<3(x+2)

④(x+5)3(x-5)-6

先让学生板演、练习,然后师生共同点评、订正,指出解题中应注意的地方,复习一元一次不等式的解法.让学生在解题过程中有目的地思考,既可巩固已学内容,又为下面的新课做好铺垫。

提出问题20__年北京空气质量良好(二级以上)的天数与全年天数之比达到55%.若到20__年这样的比值要超过70%,那么,20__年北京空气质量良好(二级以上)的天数至少要增加多少天?选择学生感兴趣的问题,可以激发学习热情,此题既承上启下,又能增强学生的应用意识。

解决问题1、20__年北京空气质量良好的天数是多少?

2、用x表示20__年增加的空气质量良好的天数,则20__年北京空气质量良好的天数是多少?

3、20__年共有多少天?与x有关的哪个式子的值应超过70%?这个式子表示什么?

4、怎样解不等式在学生讨论后,教师做解题过程示范.

5、比较解这个不等式与解方程的步骤,两者有什么不同吗?

在学生充分讨论的基础上,师生共同归纳得出:

解一元一次不等式与解一元一次方程类似,只是不等式两边同乘以(或除以)一个数时,要注意不等号的方向.解一元一次方程,要根据等式的性质,将方程逐步化为x-a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa或xa)的形式.一连串的问题引发学生阵阵思考。

展示整个解题过程,有利于学生发现解一元一次不等式与

解一元一次方程的关系,初步感知实际问题对不等式解集的影响.

让学生自己讨论总结,即可渗透类比思想,又能掌握注意点.

巩固新知1、解下列不等式,并在数轴上表示解集:

(1)(2)2、.当x或y满足什么条件时,下列关系成立?

(1)2(x+1)大于或等于1;

(2)4x与7的和不小于6;

(3)y与1的差不大于2y与3的差;

(4)3y与7的和的小于-2.学会举一反三,巩固已学知识。a)的形式.一连串的问题引发学生阵阵思考。展示整个解题过程,有利于学生发现解一元一次不等式与解一元一次方程的关系,初步感知实际问题对不等式解集的影响.让学生自己讨论总结,即可渗透类比思想,又能掌握注意点.巩固新知1、解下列不等式,并在数轴上表示解集:(1)(2)2、.当x或y满足什么条件时,下列关系成立?(1)2(x+1)大于或等于1;(2)4x与7的和不小于6;(3)y与1的差不大于2y与3的差;(4)3y与7的和的小于-2.学会举一反三,巩固已学知识

猜你喜欢